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Abstract

LetM be the moduli space of torsion-freeG2 structures on a compact orientedG2 manifoldM.
The natural cohomology mapπ3 :M→ H3(M,R) is known to be a local diffeomorphism [Compact
Manifolds with Special Holonomy, Oxford University Press, 2000]. LetM1 ⊂M be the subset of
G2 structures with volume (M) = 1. We show every nonzero element ofH4(M,R) = H3(M,R)∗ is
a Morse function onM1 when composed withπ3, and we compute its Hessian. The result implies
a special case of Torelli’s theorem: ifH1(M,R) = 0 and dimH3(M,R) = 2, the cohomology map
π3 :M→ H3(M,R) is one to one on each connected component ofM. We formulate a compactness
conjecture on the set ofG2 structures of volume (M) = 1 with boundedL2 norm of curvature. If
this conjecture were true, it would imply that every connected component ofM is contractible, and
that every compactG2 manifold supports aG2 structure whose fundamental 4-form represents the
negative of the (nonzero) first Pontryagin class ofM. We also observe that whenH1(M,R) = 0, and
the volume of the torusH3(M,R)/H3(M,Z) is constant alongM1, the locusπ3(M1) ⊂ H3(M,R)
is a hyperbolic affine sphere.
© 2004 Elsevier B.V. All rights reserved.

AMS SC:53C26

Keywords:G2 structure; Moduli space; Morse function

∗ Tel.: +82-54-2792985; fax: +82-54-2792712.
E-mail address:wang@postech.ac.kr.

0393-0440/$ – see front matter© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.06.001



S.H. Wang / Journal of Geometry and Physics 53 (2005) 166–179 167

1. Introduction

LetM be the moduli space of torsion-freeG2 structures on a compactG2 manifold
M. It is known thatM is a smooth manifold of dimensionb3 = dimH3(M,R). WhenM
has full holonomyG2, or equivalently whenπ1(M) is finite, a connected component ofM
coincides with the Ricci flat Einstein deformation space of the underlyingG2 metric, as
the property for a Ricci flat metric to support a parallel spinor is preserved under Einstein
deformation. In particular,M is a real analytic manifold endowed with anL2 Riemannian
metric[7,9,10].

The moduli space of polarized Calabi-Yau structures has been studied extensively[13],
and there is a recent work of Wilson on the normalized Kähler moduli of Calabi-Yau
manifolds[15]. One of our motivation for this work is to propose an extension of these
studies toG2 moduli space, for all of these moduli spaces belong to the category of moduli
space of metrics with special holonomy.

Another motivation comes from the following question:Can one find the bestG2 struc-
ture on a givenG2 manifold M?A natural condition would be to require the fundamental
3-formφ ∈ Ω3(M) to satisfy [∗φφ] = −p1(M), wherep1(M) ∈ H4(M,R) is the (nonzero)
first Pontryagin class and∗φφ is the Hodge dual ofφ. We will see that suchφ locally mini-
mizes theL2 norm of the curvature tensor of the underlyingG2 metric within the set ofG2
structures with fixed volume(M), Section 4.

One of the main results of this paper is the statement that any nonzero elementβ ∈
H4(M,R) = H3(M,R)∗ composed with the cohomology mapM1 → H3(M,R) is a Morse
function onM1, whereM1 ⊂M is the subset of the moduli space ofG2 structures of
volume 1. Moreover we show that whenb1 = 0 andβ = −p1(M) �= 0, every critical point
is a positive local minimum. As a corollary, we prove a special case of the Torelli theorem; if
b1 = 0 andb3 = 2, the cohomology mapM→ H3(M,R) is one to one on each connected
component ofM.

In order to apply this result to the question of finding acanonicalG2 structure, one
will need an analogue of Mumford compactness theorem for Riemann surfaces. Based
on the geometry of the Torelli map (to be defined below) and the main results above, we
formulate inSection 4a conjecture on the compactness of the set ofG2 structures of volume
1 with uniformly bounded height with respect to−p1(M). If this compactness theorem is
true, a simple Morse theory argument then implies that each connected component ofM
is contractible, and that every compactG2 manifoldM supports aG2 form φ such that
[∗φφ] = −p1(M).

In the last section, we consider the Torelli mapπ :M→ H3(M,R) ⊕H4(M,R) defined
by

π(〈φ〉) = (π3(〈φ〉), π4(〈φ〉)) = ([φ], [∗φφ]) ∈ H3(M,R) ⊕H4(M,R),

where〈φ〉 represents the equivalence class ofG2 structures represented byφ. We prove that
if b1 = 0 andH3(M,R) ⊕H4(M,R) is equipped with the canonical metric of signature
(b3, b4),π is an isometric immersion (up to sign) alongM1. Moreover, ifb3 = 2, the natural
Riemannian metric onM is flat.
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We also describe aG2 moduli space analogue of Hitchin’s result on the canonical em-
bedding of the special Lagrangian moduli space[8]. If b1 = 0 and the volume of the torus
H3(M,R)/H3(M,Z) is constant alongM1, the hypersurfaceπ3(M1) ⊂ H3(M,R) is a hy-
perbolic affine sphere centered at the origin. This is also equivalent to the ratio of Jacobians
of the projectionsπ3 andπ4 being constant alongM1.

2. Moduli space ofG2 structures

In this section we record some definitions and basic results onG2 structures[9,2,3].
Consider the exterior 3-formϕ defined onR7 by

ϕ = (dx12 + dx34 + dx56) ∧ dx7 + dx135 − dx146 − dx362 − dx524, (1)

wherexi’s are standard coordinates and dx12 = dx1 ∧ dx2, etc. The stabilizer ofϕ

G2 = {A ∈ GL7(R)|A∗ϕ = ϕ}

is the compact, connected, simply connected, rank 2 simple Lie group of dimension 14.G2
also leaves invariant the 7-form dx12···7 and a metric defined by

〈u, v〉 dx12···7 = 1
6(u�ϕ) ∧ (v�ϕ) ∧ ϕ (2)

for u, v ∈ R
7.GL7(R) orbit of ϕ is one of two openGL7(R) orbits in

∧3(R7)∗ [2].
Letπ : F → M be the principalGL+

7 (R) bundle over a compact oriented 7-manifoldM.
The fiber over a pointp ∈ M consists of the oriented linear isomorphisms from the tangent
spaceTpM to R

7. Let PM = F/G2 ⊂ ∧3
T ∗M be the open subset whose fiber at each

point p ∈ M consists ofφp ∈ ∧3
T ∗
pM that can be identified with (1) under an oriented

isomorphism betweenTpM andR
7. An elementφ ∈ C∞(PM) is called apositive3-form.

By definition, a positive 3-formφ onM is equivalent to a topologicalG2 structure onM,
i.e., a reduction of theGL+

7 (R) bundleF to aG2 ⊂ SO7 bundle

Fφ = {u ∈ F |u : Tπ(u)M → R
7 is an oriented linear isomorphism such that

u∗ϕ = φπ(u)}. (3)

A compact oriented 7-manifold admits a positive 3-form if and only if it is spin[9].
Let gφ and dvolφ be the metric and the volume form determined by a positive 3-form

φ as in (2). SincePM ⊂ ∧3
T ∗M is an open subset, the tangent spaceTφC

∞(PM) of the
infinite-dimensional manifoldC∞(PM) is the space of differential 3-forms

TφC
∞(PM) = C∞

(∧
3T ∗M

)
= Ω3,

andC∞(PM) becomes a Riemannian manifold with respect to theL2 metric onΩ3 deter-
mined bygφ. Note that the diffeomorphism group Diff(M) acts onC∞(PM) by isometries.

Let ∗φ be the Hodge star operator on differential forms induced byφ.
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Definition 1. A positive 3-formφ on an oriented 7-manifold is aG2 form if

dφ = 0, d ∗φ φ = 0. (4)

An oriented 7-manifold is aG2 manifold if it supports aG2 form.

Eq. (4) is equivalent to the torsion freeness of the associatedG2 ⊂ SO7 structureFφ [2].
Let φ be aG2 form on a compactG2 manifoldM. The holonomy of the associatedG2

metricgφ is isomorphic to a subgroup ofG2, andgφ is necessarily Ricci-flat. By applying
Cheeger–Gromoll splitting theorem for complete Riemannian manifolds with nonnegative
Ricci curvature, the holonomy of aG2 metric is fullG2 whenever the fundamental group
π1(M) is finite.

LetM̂ ⊂ C∞(PM) denote the space ofG2 forms, and letD0 ⊂ Diff(M) be the subgroup
of diffeomorphisms ofM isotopic to the identity.

Definition 2. LetM be aG2 manifold. The moduli space ofG2 structures (forms) is the
quotient spaceM = M̂/D0.

Given aG2 form φ, we denote its equivalence class by〈φ〉.
Remark 1. ThetrueG2 moduli space iŝM/Diff(M), andM should instead be called the
Teichmúller spaceof G2 structures. However, since only the spaceM will be considered
in this paper, we use the termG2 moduli space forM.

M is a smooth manifold of dimensionb3 = dimH3(M,R) [9]. FromRemark 1, there
exists a Riemannian metric onM for which M̂→M is a Riemannian submersion. A
connected component ofM coincides with the Einstein deformation space of the underlying
G2 metrics, which has a real analytic structure[10]. From the definition, the cohomology
mapπ3 :M→ H3(M,R) is well defined, and we denote the image of an equivalence class
by π3(〈φ〉) = [φ] for simplicity.

Remark 2. Let f be a diffeomorphism ofM. Then

∗f ∗φf
∗φ = f ∗(∗φφ), (5)

and the cohomology mapπ4 :M→ H4(M,R) by π4(〈φ〉) = [∗φφ] is also well defined.
In fact, we may take the dual definition of the moduli space ofG2 structures as the set of
equivalence classes ofpositive4-formsψ = ∗φφ that satisfy dψ = 0 and d∗ψ ψ = 0. Note
however that∗φφ = ∗(−φ)(−φ).

Let φ ∈ M̂. Then
∧∗

T ∗M admits aG2 invariant decomposition∧
2T ∗M = ∧ 2

7 ⊕∧ 2
14,

∧ 3T ∗M = ∧ 3
1 ⊕∧ 3

7 ⊕∧ 3
27

such that∧
2
7 = {v�φ|v ∈ TM}, ∧ 2

14 = {
η ∈ ∧ 2T ∗M|η ∧ ∗φφ = 0

}
,∧

3
1 = {λφ|λ ∈ R}, ∧ 3

7 = {v� ∗φ φ|v ∈ TM},∧
3
27 = {h · φ|h ∈ S2(T ∗M) is a quadratic form with trgφh = 0}, (6)
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whereh · φ denotes the action ofh ∈ S2(T ∗M) ⊂ End(TM) as a derivation. In particular,
for anyX ∈ Ω3 there exists a unique quadratic formhX and a vector fieldvX such that

X = hX · φ + vX� ∗φ φ.

We setΩpk = C∞(
∧p

k ), and writeX = ∑
Xk with Xk ∈ Ωpk for the decomposition of

a givenX ∈ Ωp. Since the Hodge Laplacian commutes with this decomposition[4], it
follows that the de Rham cohomology group admits a corresponding Hodge decomposition
Hp(M,R) = ⊕Hpk .

FurthermoreΩ3 ∼= TφC
∞(PM) admitsL2 orthogonal decomposition along the subman-

ifold M̂ ⊂ C∞(PM) as follows, which easily follows from (6) and[9, p. 252].

TφM̂ = {X ∈ Ω3| dX = 0, d ∗φ ( 4
3X1 +X7 −X27) = 0} = Hφ ⊕ Vφ,

Hφ = {X ∈ Ω3| dX = 0, d ∗φ X = 0} = TφM̂ ∩ V⊥
φ ,

Vφ = {dΩ2
7}, Nφ = (TφM̂)⊥ ⊂ Ω3. (7)

Here∗φ((4/3)X1 +X7 −X27) is the derivative of the mapφ → ∗φφ.Hφ andVφ represent
the horizontal and vertical subspaces ofTφM̂ with respect to the submersion̂M→M. The
orthogonal projection maps fromTφC∞(PM) to these subspaces will be denoted byΠH

φ ,

ΠV
φ , andΠN

φ , respectively.

3. Horizontal geodesics on̂M→M

Let {w1, w2, . . . , w7} be a local coframe on aG2 manifoldM with aG2 form φ. For a
differential 3-formX onM we write,

X = 1
6Xijkw

i ∧ wj ∧ wk ∈ TφC∞(PM) ∼= Ω3,

whereXijk is skew symmetric in all of its indices. Then theL2 inner product onTφC∞(PM)
is given by

〈〈X, Y〉〉φ =
∫
M

〈X, Y〉φ dvolφ = 1

6

∫
M

XijkYi′j′k′g
ii′
φ g

jj′
φ g

kk′
φ dvolφ, (8)

wheregii
′
φ = 〈wi,wi′ 〉φ represent the inner product onT ∗M defined bygφ. Note that

〈〈φ, φ〉〉φ = 7 Volφ(M).
Let ∇ be the Levi-Civita connection of theL2 metric (8) onC∞(PM). If we identify

tangent vectors toC∞(PM) with theΩ3 valued functions onC∞(PM), we have

∇XY = X(Y ) +DXY, (9)

whereX(Y ) is the directional derivative ofY as anΩ3 valued function, andDXY is the
covariant derivative ofY considered as a translation invariant vector field with respect to
the natural linear structure ofC∞(PM) ⊂ Ω3.DXY can be computed explicitly.
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Lemma 1 (Bryant[3]). LetZ = hZ · φ + vZ� ∗φ φ ∈ TφC∞(PM), and consider a curve
φt = φ + tZ + O(t2) ∈ M̂. Thengφt = gφ + t2hZ + O(t2).

Proposition 1. Let X, Y,Z ∈ Ω3 be viewed as translation invariant vector fields in a
neighborhood ofφ ∈ C∞(PM). Then

Z〈〈X, Y〉〉φ = −〈〈hZ ·X, Y〉〉φ − 〈〈X, hZ · Y〉〉φ+
∫
M

trgφ (hZ)〈X, Y〉φ dvolφ, (10)

and

2〈〈DXY,Z〉〉φ = −2〈〈hX · Y + hY ·X,Z〉〉φ + 〈〈hZ ·X, Y〉〉φ + 〈〈X, hZ · Y〉〉φ

+
∫
M

trgφ (hX)〈Y,Z〉φ dvolφ +
∫
M

trgφ (hY )〈X,Z〉φ dvolφ

−
∫
M

trgφ (hZ)〈X, Y〉φ dvolφ. (11)

Proof. For (10), differentiate (8) usingLemma 1. (11) is the standard formula for computing
Levi-Civita connection from a Riemannian metric[6], using the fact [X, Y ] = [Y,Z] =
[Z,X] = 0 for they are translation invariant. �

Let γt ⊂M be a geodesic, and letφt ⊂ M̂ be one of its horizontal lifts based atφ0,
which is also a geodesic in̂M. As a curve inC∞(PM),

ΠN
t (φ′

t) = 0 (φt is horizontal), (12)

ΠN
t (∇φ′

t
φ′
t) = ∇φ′

t
φ′
t (φt is geodesic), (13)

whereΠN
t = ΠN

φt
. Since

∇φ′
t
φ′
t = φ′′

t +Dφ′
t
φ′
t ,

we get from (13)

φ′′
0 = ΠN

0 (φ′′
0) −ΠV+H

0 (Dφ′
0
φ′

0).

Differentiating (12)

d

dt
ΠN
t (φ′

0)

∣∣∣∣
t=0

+ΠN
0 (φ′′

0) = 0,

and we obtain

φ′′
0 = − d

dt
ΠN
t (φ′

0)

∣∣∣∣
t=0

−ΠV+H
0 (Dφ′

0
φ′

0). (14)

We record the following for later application.
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Lemma 2. Let φt ∈ M̂ be a curve, and letψ0 = ∗φ0φ0. LetX ∈ Ω3 be a closed3-form
considered as a translation invariant vector field alongφt . Then∫

M

ψ0 ∧ d

dt
ΠN
t (X)

∣∣∣∣
t=0

= 0.

Proof. WriteX = XH
t +XV

t +XN
t , whereXH

t ∈ Hφt ,XV
t ∈ Vφt , andXN

t ∈ Nφt . From the
decomposition (7), dX = dXN

t = 0. SinceNφt is orthogonal toHφt , the space of harmonic
forms, every closed element inNφt is in fact exact. �

4. Morse functions onM1

Let M̂1 ⊂ M̂ be the set ofG2 forms with Volφ(M) = 1. SinceD0 acts trivially on the
top cohomologyH7(M,R), there exists an induced action ofD0 on M̂1. We letM1 =
M̂1/D0 ⊂M be the subset of equivalence classes ofG2 structures of volume 1. Then
M ∼=M1 × R

+ naturally, andM1 is an embedded hypersurface ofM. In this section, we
show that every nonzero element inH4(M,R) = H3(M,R)∗ is a Morse function when
composed with the cohomology mapM1 → H3(M,R), and we compute its Hessian.

Define the volume function

V (φ) = 1

7

∫
M

φ ∧ ∗φφ : M̂→ R
+. (15)

ForX = X1 +X7 +X27 ∈ TφM̂,

∇XV = 1

7

∫
M

X1 ∧ ∗φφ + φ ∧ 4

3
∗φ X1 (by (7))

= 1

3

∫
M

X1 ∧ ∗φφ = 1

3
〈〈X,φ〉〉φ.

Thus the gradient of the volume function atφ is

∇V = 1
3φ ∈ Hφ,

and we denoteνφ = (1/
√

7)φ ∈ Hφ the unit normal tôM1 ⊂ M̂ atφ. The second funda-
mental form of the hypersurfacêM1 is then

II = −〈〈δν, δφ〉〉 = − 1√
7
〈〈δφ, δφ〉〉,

andM̂1 ⊂ M̂ is a umbilic hypersurface. Hereδφ in the expression above is a tautological
1-form that represents the infinitesimal displacement ofφ in the vector spacêM.

Next we introduce a special class of functions onM. Forβ ∈ H4(M,R) = H3(M,R)∗,
define

Fβ(〈φ〉) = β([φ]). (16)

Let Fβ1 denote its restriction toM1, and Crit(Fβ1 ) denote its critical set.



S.H. Wang / Journal of Geometry and Physics 53 (2005) 166–179 173

Remark 3. From Remark 2, Gα(〈φ〉) = α([∗φφ]) is also well defined onM for α ∈
H3(M,R) = H4(M,R)∗.

Proposition 2.

Crit(Fβ1 ) =
{
〈φ〉|β = c

β
〈φ〉[∗φφ] for some constant cβ〈φ〉 = 1

7
F
β

1 (〈φ〉)
}
.

Proof. From the description of the unit normalν above,〈φ〉 is a critical point ofFβ1 when-
everβ annihilatesH3

7 ⊕H3
27 ⊂ Hφ. The proposition follows forH3(M,R)∗ = H4(M,R).

�
Let 〈φ0〉 ∈ Crit(Fβ1 ) and putψ0 = ∗φ0φ0. Then one finds

∇2F
β

1 |〈φ0〉 =∇2Fβ|〈φ0〉 +
∂

∂ν
Fβ |〈φ0〉II 〈φ0〉 = ∇2Fβ|〈φ0〉 −cβ〈φ0〉〈〈δφ, δφ〉〉〈φ0〉. (17)

Here we continue to use∇ to denote the Levi-Civita connection of the Riemannian manifold
M. LetX ∈ Hφ0 be a horizontal lift of a tangent vectorx ∈ T〈φ0〉M1, and letφt ⊂ M̂ be a
horizontal geodesic withφ′

0 = X. From (14) andLemma 2,

∇2Fβ(x, x) =
∫
M

c
β
〈φ0〉ψ0 ∧ φ′′

0 = −cβ〈φ0〉〈〈φ0,DXX〉〉φ0.

SetX = vX�ψ0 + hX · φ0 = X7 +X27. Proposition 1then gives,

〈〈φ0,DXX〉〉φ0 = −2〈〈hX ·X,φ0〉〉φ0 + 〈〈X,X〉〉φ0 − 7
6〈〈X,X〉〉φ0

(sincehφ0 = 1
3gφ0 andX ∈ Tφ0M̂1)

= −1
6〈〈X,X〉〉φ0 − 2〈〈hX ·X,φ0〉〉φ0

= −1
6〈〈X,X〉〉φ0 − 2〈〈X27, X27〉〉φ0.

Theorem 1. LetFβ1 be the function onM1 defined by(16) for β ∈ H4(M,R).The Hessian

of Fβ1 at a critical point〈φ0〉 ∈M1 is

∇2F
β

1 |〈φ0〉(x, x) = −cβ〈φ0〉(
5
6〈〈x7, x7〉〉〈φ0〉 − 7

6〈〈x27, x27〉〉〈φ0〉),

where x = x7 + x27 ∈ T〈φ0〉M1 = H3
7 ⊕H3

27, β = c
β
〈φ0〉[∗φ0φ0] with c

β
〈φ0〉 = (1/7)Fβ1

(〈φ0〉). In particular Fβ1 is a Morse function onM1 for any nonzeroβ ∈ H4(M,R).

Note that ifH1(M,R) = 0, every critical point ofFβ1 is either a positive local minimum
or a negative local maximum.

Let p1(M) ∈ H4(M,R) be the first Pontryagin class of aG2 manifoldM. It is known
for anyG2 form φ ∈ M̂1

−p1(M)([φ]) = 1
56π

2‖Rgφ‖2, (18)
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where‖Rgφ‖ is theL2 norm of the curvature tensor of theG2 metricgφ [9].

Corollary 1. Let M be a compact orientedG2manifold, and letM1 be the moduli space of
G2 structures of volume1. Then each connected component ofM1 is noncompact except
whendimH3(M,R) = 1.

Proof. Supposep1(M) = 0. Then by (18), anyG2 structure onM is necessarily flat.M
must then be a quotient of a flat torus, andM1 is aSO7/G2 = RP7 bundle over the moduli
space of flat Riemannian metrics onM with volume 1, which is noncompact.

Supposep1(M) �= 0, thenF−p1(M)
1 > 0 onM1. The corollary follows fromTheorem 1

by maximum principle. �
Theorem 1also implies the following special case of the Torelli theorem forG2 structures.

Setb1 = dimH1(M,R) andb3 = dimH3(M,R).

Corollary 2. Let M be a compact orientedG2 manifold withb1 = 0 and b3 = 2. Then
each of the cohomology mapsπ3 :M→ H3(M,R) andπ4 :M→ H4(M,R) is one to
one on every connected component ofM.

Proof. Let φ0, φ ∈ M̂1 and putψ0 = ∗φ0φ0,ψ = ∗φφ. Supposeπ4 is not one to one and,
sinceM =M1 × R

+, assume [ψ] = λ[ψ0] for a constantλ �= 0. Then both〈φ〉 and〈φ0〉
are critical points ofF [ψ0]

1 by Proposition 2. But sinceb1 = 0 and dimM1 = 1, F [ψ0]
1 is

positive and its critical points can only be local minima. ThereforF
[ψ0]
1 must be a positive

convex function on〈φ0〉 component ofM1 with only one critical point〈φ0〉.
Supposeπ3 is not one to one and assume [φ] = λ[φ0]. The result follows from the similar

argument by consideringG[φ0] , seeRemark 3for definition. �
Based onTheorem 1andCorollary 2, we propose the following conjecture on the com-

pactness ofG2 structures of volume 1 with boundedL2 norm of curvature.

Conjecture1. Let{φn}be a sequence ofG2 forms on a compact oriented 7-manifoldMwith
H1(M,R) = 0 such that Volφn (M) = 1. Suppose{−p1(M)([φn])} = {(1/56π2)‖Rgφn ‖2} is
bounded from above. Then there exists a subsequence{φnk }, a sequence of diffeomorphisms
fk, and aG2 form φ such thatf ∗

k φnk → φ in C1.

Suppose this conjecture is true, and consider the functionF
−p1(M)
1 . From theC1 con-

vergence we have [f ∗
k φnk ] → [φ] and [f ∗

k ∗φnk φnk ] → [∗φφ], and the conjecture implies
that the set

(F−p1(M)
1 )c = {〈φ〉 ∈M1|F−p1(M)

1 (〈φ〉) ≤ c}

is compact for any constantc. HenceF−p1(M)
1 is a positive proper function[11]. Since

every critical points ofF−p1(M)
1 is a positive local minimum, a result form Morse theory

[11, p. 20]shows that every connected component ofM1 is contractible, and that there
exists a unique critical point〈φ0〉 of F−p1(M)

1 in each connected component ofM1. By
Theorem 1, [∗φ0φ0] must then be a constant multiple of−p1(M). SinceM ∼=M1 × R

+,
this implies every connected component ofM is contractible and contains a unique element
〈φ0〉 such that [∗φ0φ0] = −p1(M).
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5. The Torelli map

Definition 3. LetM be the moduli space ofG2 structures on a compactG2 manifoldM.
The Torelli mapπ :M→ H3(M,R) ⊕H4(M,R) is defined by

π(〈φ〉) = (π3(〈φ〉), π4(〈φ〉)) = ([φ], [∗φφ]).

The purpose of this section is to describe the image of the Torelli mapπ(M) and the
hypersurfaceπ3(M1) ⊂ H3(M,R) (or equivalentlyπ4(M1) ⊂ H4(M,R)). A general idea
is that any invariants ofπ(M) as a Lagrangian submanifold, see (21), or the invariants
of π3(M1) as an affine hypersurface will be invariants ofM. We assume in this section
H1(M,R) = 0.

Let {α1, α2, . . . , αl} be a basis ofH3(M,R) and {β1, β2, . . . , βl} be its dual basis of
H4(M,R) so thatβA(αB) = δAB , wherel = b3 = dimH3(M,R). Let xt = (x1, x2, . . . , xl)
andyt = (y1, y2, . . . , yl) be the coordinates ofH3(M,R) andH4(M,R) with respect to
these basis. Then

∑
A dxA ∧ dyA is the canonical symplectic form andG = ∑

A dxA dyA
is the canonical metric of signature (l, l) on H3(M,R) ⊕H4(M,R) = H3(M,R) ⊕
H3(M,R)∗. By definition,

π3(〈φ〉) =
∑
A

xA(〈φ〉)αA, π4(〈φ〉) =
∑
A

yA(〈φ〉)βA, (19)

wherexA(〈φ〉) = βA([φ]), yA(〈φ〉) = αA([∗φφ]). Eachx andy is a local diffeomorphism
fromM to R

l [9]. The volume function (15) is well defined onM = M̂/D0, and in terms
of these coordinates is given by the formula

V (〈φ〉) = 1

7

∫
M

φ ∧ ∗φφ = 1

7

∑
A

xAyA,

and

dV = 1

7

∑
A

xA dyA + yA dxA = 1

7

∫
M

φ ∧ dπ4 + dπ3 ∧ ∗φφ.

= 1

3

∫
M

dπ3 ∧ ∗φφ (by (7))

= 1

3

∑
A

yA dxA. (20)

Hence

3
∑
A

xA dyA = 4
∑
A

yA dxA, (21)

and the Torelli mapπ is a Lagrangian immersion[9].
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Let p = (pAB) = (pBA) be the uniqueGLl(R) valued function onM such that dyA =∑
B pAB dxB. From (21), we have

4y = 3px, (22)

and the invertible symmetric matrix functionp transforms the period functionx to y. Upon
a change of coordinatesx∗ = a−1x, y∗ = aty for a ∈ GLl(R), p becomesp∗ = atpa, and
dxt pdx = dxt · dy is a well-defined quadratic form onM, which is the pulled back metric
π∗(G).
Proposition 3. The signature ofπ∗G is (1, b3 − 1). −π∗G is theL2 Riemannian metric
when restricted toM1 ⊂M.
Proof. LetZ = Z1 + Z27 ∈ Hφ be the horizontal lift ofz = z1 + z27 ∈ T〈φ〉M1. Then

π∗G(z, z) = dxt(z) · dy(z) = 4
3〈〈Z1, Z1〉〉φ − 〈〈Z27, Z27〉〉φ (by (7))

= 4
3〈〈z1, z1〉〉〈φ〉 − 〈〈z27, z27〉〉〈φ〉.

�
Let {ξ1(φ), ξ2(φ), . . . , ξl(φ)} be a basis of harmonic 3-forms with respect to theG2

metricgφ such that [ξA(φ)] = αA. TheL2 Riemannian metric tensor onM can be written
asmAB(〈φ〉) dxA dxB where by definition

mAB(〈φ〉) =
∫
M

∗φξA(φ) ∧ ξB(φ) = 〈〈ξA(φ), ξB(φ)〉〉φ (23)

or equivalently

[∗φξA(φ)] =
∑
B

mAB(〈φ〉)βB.

FromProposition 3 and (20), (22), it easily follows that

mAB = −pAB + 1

3V
yAyB, mAB = −pAB + 1

4V
xAxB, (24)

where (mAB) and (pAB) are inverse matrices of (mAB) and (pAB), respectively. (24) and
Eqs. (21), (22) for example can be used to show?V = (7/18)b3 > 0.
Remark 4. Whenb3 = 2, a computation using (24) showsmAB dxA dxB is a flat Rieman-
nian metric onM.

We now turn our attention to the hypersurfaceΣ = [M1] ⊂ H3(M,R). For concreteness,
let us assume that{α1, α2, . . . , αl} is a basis ofH3(M,Z)/ torsion. Choose an orientation
forH3(M,R), and we consider the properties ofΣ that are invariant under the linear change
of basis bySLl(R) [5,12]. We agree on the index range 1≤ i, j ≤ l− 1 and 1≤ A, B ≤ l.

Let�x = ∑
A x

AαA be the immersion defined by (19). SinceM1 is defined by the equation
V = 1, we may write

d�x =
∑
i

dxi αi + dxl αl =
∑
i

dxi
(
αi − yi

yl
αl

)
+
(

dxl + 1

yl

∑
i

yi dx
i

)
αl

=
∑
i

ωiei + ωlel, (25)
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where

ei = αi − yi

yl
αl, el = αl, (26)

andωi = dxi. Note that by (25) we haveωl = dxl + (1/yl)
∑
i yi dx

i = 0. Also after a
linear change of coordinates if necessary, we may assume thatyl > 0 and hence dx1 ∧
dx2 ∧ · · · dxl−1 �= 0. Following the general theory of moving frames, define (ωBA) by

deA =
∑
B

ωBAeB.

Differentiating (26), we get

dei ≡ ωliel mode1, e2, . . . , el−1 ≡ −d

(
yi

yl

)
el, (27)

and

ωli = −d

(
yi

yl

)
= −pij

yl
dxj − pil

yl
dxl + yi

y2
l

dyl

= −pij
yl

dxj + 1

y2
l

(
(yiplj + yjpli) dxj − pll

yl
yiyj dxj

)
(sinceωl = 0)

=
(

−pij
yl

+ pliyj + pljyi
y2
l

− pll

y3
l

yiyj

)
dxj = hijω

j.

The second fundamental form ofΣ is by definition

II =
∑
ij

hijω
iωj = − 1

yl

∑
AB

pAB dxA dxB.

Since we are assumingH1(M,R) = 0, II is definite byProposition 3and we may set
H = det(hij) > 0. The normalized second fundamental form

ÎI = H−1/(l+1)II

is an affine invariant calledBlaschkemetric[5].ωl1 ∧ ωl2 · · · ∧ ωll−1 = Hω1 ∧ ω2 · · · ∧ ωl−1

by definition, and a short computation using (27) gives

ωl1 ∧ ωl2 · · · ∧ ωll−1 = 1

yll

(∑
A

yA
∂

∂yA
�dy1 ∧ dy2 · · · ∧ dyl

)

= 1

yll

3

4
det(p)

(∑
A

xA
∂

∂xA
�dx1 ∧ dx2 · · · ∧ dxl

)

= 1

yll

3

4
det(p)(−1)l−1

∑
A x

AyA

yl
dx1 ∧ dx2 · · · ∧ dxl−1
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for
∑
A yA(∂/∂yA) = (3/4)

∑
A x

A(∂/∂xA) by (21). SinceV = (1/7)
∑
A x

AyA = 1,

H = 21
4 det(p)(−1)l−1y

−(l+1)
l ,

and

ÎI = −
(

21

4
det(p)(−1)l−1

)−1/(l+1)∑
AB

pAB dxA dxB.

Another affine invariant�ξx, calledaffine normal, is defined by

�ξx = H1/(l+1)

(
el +

∑
i

tiei

)
,

whereti’s are uniquely determined by the equation

1

l+ 1
d log|H | +

∑
i

tiωli = 0 = λ
∑
A

xA dyA

for some nonzeroλ in our case[5]. SetqA = (1/(l+ 1) det(p))(∂ det(p)/∂yA). Then a simple
computation shows thatti = yl(qi − xiλ), whereλ = (1/7)(−1 +∑

A yAq
A). The affine

normal�ξx is now determined to be

�ξx = |H |1/(l+1)

(
el +

∑
i

tiei

)

= |H |1/(l+1)

(
el + yl

7
xiei + yl

(
qi − xi

7

(∑
B

yBq
B

))
ei

)

= |H |1/(l+1)yl

7

(
xAαA +

(
7qA − xA

(∑
B

yBq
B

))
αA

)
. (28)

A hypersurface in an affine space is called anaffine sphereif all the affine normal lines pass
through a fixed point(finite or infinite) called the center. In case it is locally convex, it is called
elliptic or hyperbolic depending on whether the center is on the convex or concave side.

Theorem 2. Let M be a compactG2 manifold withH1(M,R) = 0. The locus of projec-
tion π3(M1) ⊂ H3(M,R) is a hyperbolic affine sphere centered at the origin iffdet(pAB)
(equivalentlydet(mAB)) is constant alongM1.

Proof. From the formula (28),�ξx is proportional to�x = xAαA iff qA = µxA onM1 for
some functionµ for all A. By definition ofqA, this is equivalent to d det(pAB) = 0 onM1.
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From (24), we have∑
AB

mAB dmAB ≡
∑
AB

pAB dpAB − 1

3V
pAB(yA dyB + yB dyA)

− 1

4V
pAB(xA dxB + xB dxA)

+ 1

12V 2
xAxB(yA dyB + yB dyA) mod dV (by (21), (22))

≡
∑
AB

pAB dpAB mod dV.

π3(M1) is locally convex byProposition 3and hyperbolic byTheorem 1. �
By definition, det(mAB) is constant onM1 iff the volume of the torus

H3(M,R)/H3(M,Z) is constant onM1. Theorem 2is analogous to Hitchin’s result on
the canonical embedding of the special Lagrangian moduli[8].
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